Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Int Immunopharmacol ; 134: 112160, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38710117

RESUMEN

INTRODUCTION: Cholera is a severe gastrointestinal disease that manifests with rapid onset of diarrhea, vomiting, and high mortality rates. Due to its widespread occurrence in impoverished communities with poor water sanitation, there is an urgent demand for a cost-effective and highly efficient vaccine. Multi-epitope vaccines containing dominant immunological epitopes and adjuvant compounds have demonstrated potential in boosting the immune response. MATERIAL AND METHODS: B and T epitopes of OMPU, OMPW, TCPA, CTXA, and CTXB proteins were predicted using bioinformatics methods. Subsequently, highly antigenic multi-epitopes that are non-allergenic and non-toxic were synthesized. These multi-epitopes were then cloned into the pCOMB phagemid. A plasmid M13KO7ΔpIII containing all helper phage proteins except pIII was created to produce the recombinant phage. Female Balb/c mice were divided into three groups and immunized accordingly. The mice received the helper phage, recombinant phage or PBS via gavage feeding thrice within two weeks. Serum samples were collected before and after immunization for the ELISA test as well as evaluating immune system induction through ELISpot testing of spleen lymphocytes. RESULTS: The titer of the recombinant phage was determined to be 1011 PFU/ml. The presence of the recombinant phage was confirmed through differences in optical density between sample and control groups in the ELISA phage technique, as well as by observing transduction activity, which demonstrated successful production of a recombinant phage displaying the Vibrio multi-epitope on M13 phage pIII. ELISA results revealed significant differences in phage antibodies before and after inoculation, particularly notable in the negative control mice. Mice treated with multi-epitope phages exhibited antibodies against Vibrio cholerae lysate. Additionally, ELISpot results indicated activation of cellular immunity in mice receiving both Vibrio and helper phage. CONCLUSION: This study emphasizes the potential of multi-epitope on phage to enhance both cellular and humoral immunity in mice, demonstrating how phages can be used as adjuvants to stimulate mucosal immunity and act as promising candidates for oral vaccination.

2.
J Biomed Phys Eng ; 14(2): 111-118, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38628894

RESUMEN

Background: Treatment response in High-grade Glioma (HGG) patients changes based on their genetic and biological characteristics. MiRNAs, as important regulators of drug and radiation resistance, and the Apparent Diffusion Coefficients (ADC) value of tumor can be used as a prognostic predictor for glioma. Objective: This study aimed to identify some of the pre-treatment individual patient features for predicting the treatment response in HGG patients. Material and Methods: In this prospective study, 18 HGG patients, who were candidated for chemo-radiation treatment, participated after informed consent of the patients. The investigated features were the expression level of miR-222 and miR-205 in plasma, the ADC value of tumor, Body Mass Index (BMI), and age. Treatment response was assessed, and Least Absolute Shrinkage and Selection Operator (LASSO) regression was used to obtain a model to predict the treatment response. Mann-Whitney U test was also applied to select the variables with a significant relationship with patients' treatment response. Results: The LASSO coefficients for miR-205, miR-222, tumor's mean ADC value, BMI, and age were 3.611, -1.683, 2.468, -0.184, and -0.024, respectively. Mann-Whitney U test results showed miR-205 and tumor's mean ADC significantly related to treatment response (P-value<0.05). Conclusion: The miR-205 expression level of the patient in plasma and tumor's mean ADC value has the potential for prognostic predictors in HGG.

3.
Biomed Pharmacother ; 173: 116465, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38507955

RESUMEN

This study introduces an innovative co-delivery approach using the MCM-co-polymerized nanosystem, integrating chitosan and polyethylene glycol, and targeted by the MUC-1 aptamer (MCM@CS@PEG-APT). This system enables simultaneous delivery of the GFP plasmid and doxorubicin (DOX). The synthesis of the nanosystem was thoroughly characterized at each step, including FTIR, XRD, BET, DLS, FE-SEM, and HRTEM analyses. The impact of individual polymers (chitosan and PEG) on payload retardation was compared to the co-polymerized MCM@CS@PEG conjugation. Furthermore, the DOX release mechanism was investigated using various kinetic models. The nanosystem's potential for delivering GFP plasmid and DOX separately and simultaneously was assessed through fluorescence microscopy and flow cytometry. The co-polymerized nanosystem exhibited superior payload entrapment (1:100 ratio of Plasmid:NPs) compared to separately polymer-coated counterparts (1:640 ratio of Plasmid:NPs). Besides, the presence of pH-sensitive chitosan creates a smart nanosystem for efficient DOX and GFP plasmid delivery into tumor cells, along with a Higuchi model pattern for drug release. Toxicity assessments against breast tumor cells also indicated reduced off-target effects compared to pure DOX, introducing it as a promising candidate for targeted cancer therapy. Cellular uptake findings demonstrated the nanosystem's ability to deliver GFP plasmid and DOX separately into MCF-7 cells, with rates of 32% and 98%, respectively. Flow cytometry results confirmed efficient co-delivery, with 42.7% of cells showing the presence of both GFP-plasmid and DOX, while 52.2% exclusively contained DOX. Overall, our study explores the co-delivery potential of the MCM@CS@PEG-APT nanosystem in breast cancer therapy. This system's ability to co-deliver multiple agents preciselyopens new avenues for targeted therapeutic strategies.


Asunto(s)
Neoplasias de la Mama , Quitosano , Nanopartículas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Polimerizacion , Doxorrubicina/farmacología , Oligonucleótidos , Plásmidos , ADN , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos
4.
Cancer Cell Int ; 23(1): 312, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057843

RESUMEN

The metastasis of melanoma cells to regional lymph nodes and distant sites is an important contributor to cancer-related morbidity and mortality among patients with melanoma. This intricate process entails dynamic interactions involving tumor cells, cellular constituents, and non-cellular elements within the microenvironment. Moreover, both microenvironmental and systemic factors regulate the metastatic progression. Central to immunosurveillance for tumor cells are natural killer (NK) cells, prominent effectors of the innate immune system with potent antitumor and antimetastatic capabilities. Recognizing their pivotal role, contemporary immunotherapeutic strategies are actively integrating NK cells to combat metastatic tumors. Thus, a meticulous exploration of the interplay between metastatic melanoma and NK cells along the metastatic cascade is important. Given the critical involvement of NK cells within the melanoma tumor microenvironment, this comprehensive review illuminates the intricate relationship between components of the melanoma tumor microenvironment and NK cells, delineating their multifaceted roles. By shedding light on these critical aspects, this review advocates for a deeper understanding of NK cell dynamics within the melanoma context, driving forward transformative strategies to combat this cancer.

5.
Heliyon ; 9(9): e19925, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809683

RESUMEN

The vaccine was first developed in 1796 by a British physician, Edward Jenner, against the smallpox virus. This invention revolutionized medical science and saved lives around the world. The production of effective vaccines requires dominant immune epitopes to elicit a robust immune response. Thus, applying bacteriophages has attracted the attention of many researchers because of their advantages in vaccine design and development. Bacteriophages are not infectious to humans and are unlikely to bind to cellular receptors and activate signaling pathways. Phages could activate both cellular and humoral immunity, which is another goal of an effective vaccine design. Also, phages act as an effective adjuvant, along with the antigens, and induce a robust immune response. Phage-based vaccines can also be administered orally because of their stability in the gastrointestinal tract, in contrast to common vaccination routes, which are intradermal, subcutaneous, or intramuscular. This review presents the current improvements in phage-based vaccines and their applications as preventive or therapeutic vaccines.

6.
Environ Res ; 237(Pt 2): 116980, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37648188

RESUMEN

Melanoma, an aggressive malignant tumor originating from melanocytes in humans, is on the rise globally, with limited non-surgical treatment options available. Recent advances in understanding the molecular and cellular mechanisms underlying immune escape, tumorigenesis, drug resistance, and cancer metastasis have paved the way for innovative therapeutic strategies. Combination therapy targeting multiple pathways simultaneously has been shown to be promising in treating melanoma, eliciting favorable responses in most melanoma patients. CAR T-cells, engineered to overcome the limitations of human leukocyte antigen (HLA)-dependent tumor cell detection associated with T-cell receptors, offer an alternative approach. By genetically modifying apheresis-collected allogeneic or autologous T-cells to express chimeric antigen receptors, CAR T-cells can appreciate antigens on cell surfaces independently of major histocompatibility complex (MHC), providing a significant cancer cell detection advantage. However, identifying the most effective target antigen is the initial step, as it helps mitigate the risk of toxicity due to "on-target, off-tumor" and establishes a targeted therapeutic strategy. Furthermore, evaluating signaling pathways and critical molecules involved in melanoma pathogenesis remains insufficient. This study emphasizes the novel approaches of CAR T-cell immunoediting and presents new insights into the molecular signaling pathways associated with melanoma.

7.
Environ Res ; 238(Pt 1): 116933, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37652218

RESUMEN

Cardiovascular diseases (CVDs) present a significant threat to health, with traditional therapeutics based treatment being hindered by inefficiencies, limited biological effects, and resistance to conventional drug. Addressing these challenges requires advanced approaches for early disease diagnosis and therapy. Nanotechnology and nanomedicine have emerged as promising avenues for personalized CVD diagnosis and treatment through theranostic agents. Nanoparticles serve as nanodevices or nanocarriers, efficiently transporting drugs to injury sites. These nanocarriers offer the potential for precise drug and gene delivery, overcoming issues like bioavailability and solubility. By attaching specific target molecules to nanoparticle surfaces, controlled drug release to targeted areas becomes feasible. In the field of cardiology, nanoplatforms have gained popularity due to their attributes, such as passive or active targeting of cardiac tissues, enhanced sensitivity and specificity, and easy penetration into heart and artery tissues due to their small size. However, concerns persist about the immunogenicity and cytotoxicity of nanomaterials, necessitating careful consideration. Nanoparticles also hold promise for CVD diagnosis and imaging, enabling straightforward diagnostic procedures and real-time tracking during therapy. Nanotechnology has revolutionized cardiovascular imaging, yielding multimodal and multifunctional vehicles that outperform traditional methods. The paper provides an overview of nanomaterial delivery routes, targeting techniques, and recent advances in treating, diagnosing, and engineering tissues for CVDs. It also discusses the future potential of nanomaterials in CVDs, including theranostics, aiming to enhance cardiovascular treatment in clinical practice. Ultimately, refining nanocarriers and delivery methods has the potential to enhance treatment effectiveness, minimize side effects, and improve patients' well-being and outcomes.


Asunto(s)
Enfermedades Cardiovasculares , Nanopartículas , Humanos , Ingeniería de Tejidos , Nanomedicina/métodos , Nanotecnología , Preparaciones Farmacéuticas , Diagnóstico Precoz
8.
Eur J Pharm Sci ; 187: 106476, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37236377

RESUMEN

Melanoma, a malignant form of skin cancer, has been swiftly increasing in recent years. Although there have been significant advancements in clinical treatment underlying a well-understanding of melanoma-susceptible genes and the molecular basis of melanoma pathogenesis, the permanency of response to therapy is frequently constrained by the emergence of acquired resistance and systemic toxicity. Conventional therapies, including surgical resection, chemotherapy, radiotherapy, and immunotherapy, have already been used to treat melanoma and are dependent on the cancer stage. Nevertheless, ineffective side effects and the heterogeneity of tumors pose major obstacles to the therapeutic treatment of malignant melanoma through such strategies. In light of this, advanced therapies including nucleic acid therapies (ncRNA, aptamers), suicide gene therapies, and gene therapy using tumor suppressor genes, have lately gained immense attention in the field of cancer treatment. Furthermore, nanomedicine and targeted therapy based on gene editing tools have been applied to the treatment of melanoma as potential cancer treatment approaches nowadays. Indeed, nanovectors enable delivery of the therapeutic agents into the tumor sites by passive or active targeting, improving therapeutic efficiency and minimizing adverse effects. Accordingly, in this review, we summarized the recent findings related to novel targeted therapy methods as well as nanotechnology-based gene systems in melanoma. We also discussed current issues along with potential directions for future research, paving the way for the next-generation of melanoma treatments.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/terapia , Melanoma/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Nanotecnología , Nanomedicina , Técnicas de Transferencia de Gen
9.
Res Pharm Sci ; 18(2): 138-148, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36873278

RESUMEN

Background and purpose: Despite the widespread utilization of cancer vaccines with specified antigens, the use of whole tumor cell lysates in tumor immunotherapy would be a very promising approach that can overcome several significant obstacles in vaccine production. Whole tumor cells provide a broad source of tumor-associated antigens and can activate cytotoxic T lymphocytes and CD4+ T helper cells concurrently. On the other hand, as an effective immunotherapy strategy, recent investigations have shown that the multi-targeting of tumor cells with polyclonal antibodies, which are also more effective than monoclonal antibodies at mediating effector functions for target elimination, might minimize the escape variants. Experimental approach: We prepared polyclonal antibodies by immunizing rabbits with the highly invasive 4T1 breast cancer cell line. Findings/Results: In vitro investigation indicated that the immunized rabbit serum inhibited cell proliferation and induced apoptosis in target tumor cells. Moreover, in vivo analysis showed enhanced anti-tumor efficacy of whole tumor cell lysate in combination with tumor cell-immunized serum. This combination therapy proved beneficial in significant inhibition of the tumor growth and the established tumor was entirely eradicated in treated mice. Conclusion and implications: Serial intravenous injections of tumor cell immunized rabbit serum significantly inhibited tumor cell proliferation and induced apoptosis in vitro and in vivo in combination with whole tumor lysate. This platform could be a promising method for developing clinical-grade vaccines and open up the possibility of addressing the effectiveness and safety of cancer vaccines.

10.
Cells ; 12(4)2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36831302

RESUMEN

MicroRNAs (miRNAs), as small regulatory RNA molecules, are involved in gene expression at the post-transcriptional level. Hence, miRNAs contribute to gene regulation of various steps of different cell subsets' differentiation, maturation, and activation. The adaptive immune system arm, which exhibits the most specific immune responses, is also modulated by miRNAs. The generation and maturation of various T-cell subsets concomitant with B-cells is under precise regulation of miRNAs which function directly on the hallmark genes of each cell subset or indirectly through regulation of signaling pathway mediators and/or transcription factors involved in this maturation journey. In this review, we first discussed the origination process of common lymphocyte progenitors from hematopoietic stem cells, which further differentiate into various T-cell subsets under strict regulation of miRNAs and transcription factors. Subsequently, the differentiation of B-cells from common lymphocyte progenitors in bone marrow and periphery were discussed in association with a network of miRNAs and transcription factors.


Asunto(s)
MicroARNs , MicroARNs/genética , Diferenciación Celular/genética , Regulación de la Expresión Génica , Factores de Transcripción/metabolismo , Subgrupos de Linfocitos T/metabolismo
11.
Bioeng Transl Med ; 8(1): e10343, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36684081

RESUMEN

MicroRNAs (miRNAs) as therapeutic agents have attracted increasing interest in the past decade owing to their significant effectiveness in treating a wide array of ailments. These polymerases II-derived noncoding RNAs act through post-transcriptional controlling of different proteins and their allied pathways. Like other areas of medicine, researchers have utilized miRNAs for managing acute and chronic wounds. The increase in the number of patients suffering from either under-healing or over-healing wound demonstrates the limited efficacy of the current wound healing strategies and dictates the demands for simpler approaches with greater efficacy. Various miRNA can be designed to induce pathway beneficial for wound healing. However, the proper design of miRNA and its delivery system for wound healing applications are still challenging due to their limited stability and intracellular delivery. Therefore, new miRNAs are required to be identified and their delivery strategy needs to be optimized. In this review, we discuss the diverse roles of miRNAs in various stages of wound healing and provide an insight on the most recent findings in the nanotechnology and biomaterials field, which might offer opportunities for the development of new strategies for this chronic condition. We also highlight the advances in biomaterials and delivery systems, emphasizing their challenges and resolutions for miRNA-based wound healing. We further review various biovectors (e.g., adenovirus and lentivirus) and abiotic materials such as organic and inorganic nanomaterials, along with dendrimers and scaffolds, as the delivery systems for miRNA-based wound healing. Finally, challenges and opportunities for translation of miRNA-based strategies into clinical applications are discussed.

12.
Adv Biomed Res ; 11: 94, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518860

RESUMEN

Background: Adoptive T-cell therapy is a promising treatment strategy for cancer immunotherapy. The ability of immunotherapy based on the adoptive cell transfer of genetically modified T cells to generate powerful clinical responses has been highlighted by recent clinical success. Techniques which are used to expand large numbers of T cells from different sources are critical in adoptive cell therapy. In this study, we evaluated the expansion, proliferation, activation of T lymphocytes, in the presence of various concentrations of interleukin-2, phytohemagglutinin (PHA), and insulin. Materials and Methods: The effect of different supplemented culture media on T cell expansion was evaluated using MTT assay. The expression level of the Ki-67 proliferation marker was evaluated by real-time polymerase chain reaction. In addition, flow cytometry analysis was performed to access T cell subpopulations. Results: Our results showed that supplemented culture media with an optimized concentration of PHA and interleukin-2 increased total fold expansion of T cells up to 500-fold with approximately 90% cell viability over 7 days. The quantitative assessment of Ki-67 in expanded T cells showed a significant elevation of this proliferation marker. Flow cytometry was also used to assess the proportion of CD4+ and CD8+ cells, and the main expanded population was CD3+ CD8+ cells. Conclusions: Based on these findings, we introduced a low-cost and rapid method to support the efficient expansion of T cells for adoptive cell therapy and other in vivo experiments.

13.
Biomater Adv ; 140: 213077, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35952549

RESUMEN

Overall, aptamers are special classes of nucleic acid-based macromolecules that are beginning to investigate because of their capability of avidity binding to a specific target for clinical use. Taking advantage of target-specific medicine led to more effective therapeutic and limitation of side effects of drugs. Herein, we discuss several aptamers and their binding capability and capacity for selecting tumor biomarkers and usage of them as targeting ligands for the functionalization of nanomaterials. We review recent applications based on aptamers and several nanoparticles to rise efficacy and develop carrier systems such as graphene oxide, folic acid, gold, mesopores silica, and various polymers and copolymer, polyethylene glycol, cyclodextrin, chitosan. The nanocarriers have been characterized by particle size, zeta potential, aptamer conjugation, and drug encapsulation efficiency. Hydrodynamic diameter and Zeta potential can used in order to monitor aptamers' crosslinking, in-vitro drug release, intracellular delivery of nanocarriers, and cellular cytotoxicity assay. Also, they are studied for cellular uptake and internalization to types of cancer cell lines such as colorectal, breast, prostate, leukemia and etc. The results are investigated in in-vivo cytotoxicity assay and cell viability assay. Targeted cancer therapy seems a good and promising strategy to overcome the systemic toxicity of chemotherapy.


Asunto(s)
Aptámeros de Nucleótidos , Nanopartículas , Neoplasias , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Excipientes , Humanos , Masculino , Neoplasias/tratamiento farmacológico , Polietilenglicoles/química , Polímeros
14.
Int J Biol Macromol ; 220: 920-933, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35987365

RESUMEN

Non-healing wounds have long been the subject of scientific and clinical investigations. Despite breakthroughs in understanding the biology of delayed wound healing, only limited advances have been made in properly treating wounds. Recently, research into nucleic acids (NAs) such as small-interfering RNA (siRNA), microRNA (miRNA), plasmid DNA (pDNA), aptamers, and antisense oligonucleotides (ASOs) has resulted in the development of a latest therapeutic strategy for wound healing. In this regard, dendrimers, scaffolds, lipid nanoparticles, polymeric nanoparticles, hydrogels, and metal nanoparticles have all been explored as NA delivery techniques. However, the translational possibility of NA remains a substantial barrier. As a result, different NAs must be identified, and their distribution method must be optimized. This review explores the role of NA-based therapeutics in various stages of wound healing and provides an update on the most recent findings in the development of NA-based nanomedicine and biomaterials, which may offer the potential for the invention of novel therapies for this long-term condition. Further, the challenges and potential for miRNA-based techniques to be translated into clinical applications are also highlighted.


Asunto(s)
Dendrímeros , MicroARNs , Ácidos Nucleicos , Materiales Biocompatibles , ADN , Dendrímeros/uso terapéutico , Hidrogeles , Liposomas , MicroARNs/genética , MicroARNs/uso terapéutico , Nanopartículas , Ácidos Nucleicos/uso terapéutico , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , Cicatrización de Heridas
15.
Adv Healthc Mater ; 11(20): e2201583, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35916145

RESUMEN

Conventional drug delivery systems are challenged by concerns related to systemic toxicity, repetitive doses, drug concentrations fluctuation, and adverse effects. Various drug delivery systems are developed to overcome these limitations. Nanomaterials are employed in a variety of biomedical applications such as therapeutics delivery, cancer therapy, and tissue engineering. Physiochemical nanoparticle assembly techniques involve the application of solvents and potentially harmful chemicals, commonly at high temperatures. Genetically engineered organisms have the potential to be used as promising candidates for greener, efficient, and more adaptable platforms for the synthesis and assembly of nanomaterials. Genetically engineered carriers are precisely designed and constructed in shape and size, enabling precise control over drug attachment sites. The high accuracy of these novel advanced materials, biocompatibility, and stimuli-responsiveness, elucidate their emerging application in controlled drug delivery. The current article represents the research progress in developing various genetically engineered carriers. Organic-based nanoparticles including cellulose, collagen, silk-like polymers, elastin-like protein, silk-elastin-like protein, and inorganic-based nanoparticles are discussed in detail. Afterward, viral-based carriers are classified, and their potential for targeted therapeutics delivery is highlighted. Finally, the challenges and prospects of these delivery systems are concluded.


Asunto(s)
Portadores de Fármacos , Sistema de Administración de Fármacos con Nanopartículas , Celulosa , Portadores de Fármacos/química , Elastina , Sistema de Administración de Fármacos con Nanopartículas/química , Polímeros , Seda
16.
Biology (Basel) ; 11(6)2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35741383

RESUMEN

Beta (ß)-thalassemia is a group of human inherited abnormalities caused by various molecular defects, which involves a decrease or cessation in the balanced synthesis of the ß-globin chains in hemoglobin structure. Traditional treatment for ß-thalassemia major is allogeneic bone marrow transplantation (BMT) from a completely matched donor. The limited number of human leukocyte antigen (HLA)-matched donors, long-term use of immunosuppressive regimen and higher risk of immunological complications have limited the application of this therapeutic approach. Furthermore, despite improvements in transfusion practices and chelation treatment, many lingering challenges have encouraged researchers to develop newer therapeutic strategies such as nanomedicine and gene editing. One of the most powerful arms of genetic manipulation is gene editing tools, including transcription activator-like effector nucleases, zinc-finger nucleases, and clustered regularly interspaced short palindromic repeat-Cas-associated nucleases. These tools have concentrated on γ- or ß-globin addition, regulating the transcription factors involved in expression of endogenous γ-globin such as KLF1, silencing of γ-globin inhibitors including BCL11A, SOX6, and LRF/ZBTB7A, and gene repair strategies. In this review article, we present a systematic overview of the appliances of gene editing tools for ß-thalassemia treatment and paving the way for patients' therapy.

17.
Adv Biomed Res ; 11: 16, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35386537

RESUMEN

The emerging of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak is associated with high morbidity and mortality rates globally. One of the most prominent characteristics of coronavirus disease-19 (COVID-19) is lymphopenia, which is in contrast to other viral infections. This controversy might be explained by the evaluation of impaired innate and adaptive immune responses, during the SARS-CoV-2 infection. During the innate immune response, poly-ADP-ribose polymerase hyperactivated due to virus entry and extensive DNA damage sequentially, leading to nicotinamide adenine dinucleotide (NAD)+ depletion, adenosine triphosphate depletion, and finally cell death. In contrast to the immune response against viral infections, cytotoxic T lymphocytes decline sharply in SARS-CoV-2 infection which might be due to infiltration and trapping in the lower respiratory tract. In addition, there are more factors proposed to involve in lymphopenia in COVID-19 infection such as the role of CD38, which functions as NADase and intensifies NAD depletion, which in turn affects NAD+-dependent Sirtuin proteins, as the regulators of cell death and viability. Lung tissue sequestration following cytokine storm supposed to be another reason for lymphopenia in COVID-19 patients. Protein 7a, as one of the virus-encoded proteins, induces apoptosis in various organ-derived cell lines. These mechanisms proposed to induce lymphopenia, although there are still more studies needed to clarify the underlying mechanisms for lymphopenia in COVID-19 patients.

18.
Adv Biomed Res ; 11: 17, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35386538

RESUMEN

Background: Tenascin-C (TNC) is a large glycoprotein of the extracellular matrix which associated with poor clinical outcomes in several malignancies. TNC over-expression is repeatedly observed in several cancer tissues and promotes several processes in tumor progression. Until quite recently, more needs to be known about the potential mechanisms of TNC as a key player in cancer progression and metastasis. Materials and Methods: In the present study, we performed a bioinformatics analysis of breast and colorectal cancer expression microarray data to survey TNC role and function with holistic view. Gene expression profiles were analyzed to identify differentially expressed genes (DEGs) between normal samples and cancer biopsy samples. The protein-protein interaction (PPI) networks of the DEGs with CluePedia plugin of Cytoscape software were constructed. Furthermore, after PPI network construction, gene-regulatory networks analysis was performed to predict long noncoding RNAs and microRNAs associated with TNC and cluster analysis was performed. Using the Clue gene ontology (GO) plugin of Cytoscape software, the GO and pathway enrichment analysis were performed. Results: PPI and DEGs-miRNA-lncRNA regulatory networks showed TNC is a significant node in a huge network, and one of the main gene with high centrality parameters. Furthermore, from the regulatory level perspective, TNC could be significantly impressed by miR-335-5p. GO analysis results showed that TNC was significantly enriched in cancer-related biological processes. Conclusions: It is important to identify the TNC underlying molecular mechanisms in cancer progression, which may be clinically useful for tumor-targeting strategies. Bioinformatics analysis provides an insight into the significant roles that TNC plays in cancer progression scenarios.

19.
Res Pharm Sci ; 16(5): 447-454, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34522192

RESUMEN

Redirected chimeric antigen receptor (CAR) T-cells can recognize and eradicate cancer cells in a major histocompatibility complex independent manner. Genetic engineering of T cells through CAR expression has yielded great results in the treatment of hematological malignancies compared with solid tumors. There has been a constant effort to enhance the effectiveness of these living drugs, due to their limited success in targeting solid tumors. Poor T cell trafficking, tumor-specific antigen selection, and the immunosuppressive tumor microenvironment are considered as the main barriers in targeting solid tumors by CAR T-cells. Here, we reviewed the current state of CAR T-cell therapy in breast cancer, as the second cancer-related death in women worldwide, as well as some strategies adopted to keep the main limitations of CAR T-cells under control. Also, we summarized various approaches that have been developed to enhance the therapeutic outcomes of this treatment in solid tumors targeting.

20.
Int J Mol Sci ; 22(11)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064039

RESUMEN

In late 2019, a new member of the Coronaviridae family, officially designated as "severe acute respiratory syndrome coronavirus 2" (SARS-CoV-2), emerged and spread rapidly. The Coronavirus Disease-19 (COVID-19) outbreak was accompanied by a high rate of morbidity and mortality worldwide and was declared a pandemic by the World Health Organization in March 2020. Within the Coronaviridae family, SARS-CoV-2 is considered to be the third most highly pathogenic virus that infects humans, following the severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV). Four major mechanisms are thought to be involved in COVID-19 pathogenesis, including the activation of the renin-angiotensin system (RAS) signaling pathway, oxidative stress and cell death, cytokine storm, and endothelial dysfunction. Following virus entry and RAS activation, acute respiratory distress syndrome develops with an oxidative/nitrosative burst. The DNA damage induced by oxidative stress activates poly ADP-ribose polymerase-1 (PARP-1), viral macrodomain of non-structural protein 3, poly (ADP-ribose) glycohydrolase (PARG), and transient receptor potential melastatin type 2 (TRPM2) channel in a sequential manner which results in cell apoptosis or necrosis. In this review, blockers of angiotensin II receptor and/or PARP, PARG, and TRPM2, including vitamin D3, trehalose, tannins, flufenamic and mefenamic acid, and losartan, have been investigated for inhibiting RAS activation and quenching oxidative burst. Moreover, the application of organic and inorganic nanoparticles, including liposomes, dendrimers, quantum dots, and iron oxides, as therapeutic agents for SARS-CoV-2 were fully reviewed. In the present review, the clinical manifestations of COVID-19 are explained by focusing on molecular mechanisms. Potential therapeutic targets, including the RAS signaling pathway, PARP, PARG, and TRPM2, are also discussed in depth.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/terapia , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Nanomedicina/métodos , Estrés Oxidativo/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , SARS-CoV-2/efectos de los fármacos , Apoptosis/efectos de los fármacos , COVID-19/metabolismo , COVID-19/fisiopatología , Colecalciferol/farmacología , Proteínas Activadoras de GTPasa/antagonistas & inhibidores , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Sistema Renina-Angiotensina/efectos de los fármacos , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/metabolismo , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/metabolismo , Taninos/farmacología , Trehalosa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...